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Abstract .  Gradient corrections to the local density (LD) potential proposed by 
Perdew and Wang (PW) and to some extent by Langreth, Mehl and Hu (LMH) have 
been used in self-consistent LMTO band calculatiom in order to detellnine groundstate 
and bands properties in some 3d, 4d and 5d transition metals, in the alkali metal 
Li and in Ce. The effect compared with LD is to expand and soften the lattice, 
which in general is too drastic for an improvement especially for 4d and 5d metals. 
Magnetic properties in Fe and Ni do not improve while the effect on some general 
band properties are only slightly better than in LD calculations. Despite some cases 
of improvement we conclude that the overall results obtained via gradient-corrected 
potentials are not yet sufficiently good to replace the LD potential. 

1. Introduction 

In recent years, there have been several attempts to  introduce gradient corrections 
[l-93 to the local density formalism (LD) [lo-201. The scheme proposed by Langreth 
and Mehl (LM) [l] to  go beyond LD overcomes some serious problems of the previous 
gradient expansions approximations [2]. Their discussion starts out from a considera- 
tion of length scales over which the density n ( ~ )  varies. They consider that the correla- 
tion functionals can be adequately characterized by two parameters; one is is the local 
Fermi wavevector ICF(r) = ( 3 i ? n ( ~ ) ) ~ / ~  and the other is given by q ( r )  = ~/C(T) ,  where 
C is the scale over which the density varies. The wavevector q(r)  can be represented 
by a simple gradient of the density: q(r)  = IVlcF(/(2k,) = IVnl/(Gn). Within their 
approximation, the correlation energy correction to the local density random-phase 
approximation (LD-RPA) [I21 is 

with J = ~ e ~ / 1 6 ( 3 ~ ~ ) ~ / ~ ,  F = 2&/qTF and where q % F ( T )  = 4kF(r) / (7ru0)  is the 
Thomas-Fermi wavevector. The first term of the correction is due to  the exchange 
and the second one to  the correlation. Previously, Herman el a1 [3] introduced the 
exchange inhomogeneity correction IVn l2/n4i3 using simple dimensional analysis. 

and 1 electrons are independent. For the correlation part, the Langreth-Mehl-Hu spin- 
density functional (LMH) [4] introduces the factor d = 2-'/'[(1+ <)5/3 + (1 - <)5/3]1/2 

The extension of exchange functional to the spin-dependent case is trivial since 
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depending on the fractional magnetization 
gradient correction in 

= (nt  - nr) /n  and generalizing the 

An improvement to LMH is the Perdew-Wang exchange functional 

E,[n] = -- 2 7  ( 3 ) l I 3  J n4I3(1 + 1 . 2 9 6 ~ ~  + 14s4 + O . ~ S ~ ) ~ / ' ~  d3r (3) 

with s = 3q/k , ,  where it is required that the exchange hole is negative everywhere 
and contains one electron [5]. The LMH correlation was also modified to  built in effects 
beyond the RPA which gives the Perdew-Wang functional (PW) [5,6] 

1 
E,,[n] = EkD-CA[n] + 2 E,[2nu] + 1 C(n)e-@' d3r. (4) 

,J=t,l 

For the correlation, the effects beyond the RPA are contained in the function C of 
r, = (4nn/3)-ll3 

0.002568 + 0.002366r8 + O.O000074r% 
1 + 8.723rS + 0.472r3 + 0.07389e C(n)  = 0.003334 + 2 

and the new argument for the exponential is 

(5) 

E)D-CA is obtained from the Monte Carlo results of Ceperly and Alder [13], which 
have been parametrized in [14,15]. In the metallic density range, the Monte Carlo 
results are very close to those of Singwi e t  a1 deduced from pair correlation func- 
tions [11,16]. It is often assumed [15,17] in LD that the correlation has the same 
magnetization dependence as the exchange energy. The more justified dependence 
given by Vosko, Wilk, Nusair [14] and by Painter [18] affects the exchange dominated 
high density region, where the correlation corrections are small compared with errors 
in the exchange energy [18]. 

LMH and Pw gradient corrections to LDA has been tested in non-uniform systems 
as atoms, molecules [7] and solids [8,9]. For 3d metals Bagno et a1 have shown that 
gradient corrections (in particular the PW version) improve results which depend on 
total energies [9]. Earlier, Norman and Koelling showed that the LM potential leads 
to  contrasting results for the bandstructures in V and Cu [8]. The objective of this 
paper is to analyze the results of PW potential for a larger number of elements (i.e. 
not only the third-row elements) and to  include in our study total energy results as 
well as results for bands and magnetic properties (the more stringent derivation of 
PW over LMH functional and the fact that Bagno et a1 found better results using PW 
made us to  study mostly the effect of the FW gradient correction). 
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2. Method 

The exchange-correlation energy with corrections of the gradient type has the form 

L(nt ,nL,Vnt ,Vnl )d3r  (7) 

and the exchange-correlation energy per particle is given by Exc(r) = L(r)/n(r). The 
corresponding exchange-correlation potential is obtained using the Euler-Lagrange 
standard techniques of the calculus of variations: 

For example, the exchange correction 

C, J v n  12/n4/3 

- * (a:(,)) * 

in the LM spin independent approximation is 

(9) 

hence following equation (9) the gradient correction to the exchange potential is 

n 

To extend the above to the spin-dependent case, n must be replaced by 2n,, thus 

Terms like V2n,/nz/3, have a divergent behaviour near atomic nuclei. But this be- 
haviour appears only a minor effect on most of the results. The only results noticeably 
affected are the values of s-wave functions at  the atomic nucleus [3]. 

In order to compare the LD and P W  approaches, the ratios E : : ( T ) / E ~ : ( ~ )  and 
V ~ ~ ~ ( T ) / V , " , " , ( ~ )  in BCC iron are plotted in figure l(a). As is shown in this figure, 
unlike the Xcu local density approaches, an energy ratio greater than 1 can give po- 
tential ratios less than l .  In figure l(b), one can notice two cusps shown by the 
gradient corrected potentials (LM and PW)  in the BCC vanadium which are a feature 
of the non-local exchange, neglected in the LD but appearing in more sophisticated 
density functional schemes applied in atoms [21]. The cusp-like behaviour was already 
observed for LM potential between 1s and 2s Be orbitals in ref [l] and for Herman et 
a1 potential applied to Kr atom (see figure 1 of [3]). Figure l ( c )  presents the ratio 
of the gradient-corrected exchange potentials and the LD potential in BCC vanadium. 
The ratio v,","(r)/v,"p(r) in the LM approximation shows a similar trend to the Pw 
analogue, near the core region and displays some differences for the intermediate re- 
gion. At the boundary of the Wigner-Seitz sphere the P W  and the LD potentials 
are almost identical. For Li, V, Fe, Ni,  Cu, Nb and Ce the ground-state proper- 
ties, magnetism and the Fermi surfaces have been determined using the self-consistent 
linearized muffin-tin-orbital (LMTO) method [22]. This method has been applied to 
many cubic crystals and is reliable for close packed structures. The main features of 
our LMTO code are as follows. The potential and the charge density are evaluated at  
each iteration self-consistently in a radial logarithmic 277 point mesh, and relativistic 
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Figure 1. ( a )  P W / L D  ratio for cxc (full curve), v i ,  (broken curve) and v i c  (chain 
curve) in iron. ( b )  Exchangecorrelation LD (full curve), P W  (broken curve), LMH 
(dotted curve) potential in vanadium. ( c )  PW/LD (broken curve) and LM/LD (-dotted 
curve) ratio for exchange-correlation potential in vanadium. 

-30 

effects, except spin-orbit coupling, are always included for the valences states. The 
core states are fully relativistic and in achieving self-consistency the core states are 
not frozen. Non spherical effects are neglected. The basis set includes s-, p-, d- and 
f-partial waves with additional g-waves in the three centre terms for all elements ex- 
cept Li, where we include the f states only as tails. This is in general not important 
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Figure 1. (Continued) 

for the shapes of the bands, but is important for the total energy calculations. Since 
our calculations in general include even contributions from g-states we think that the 
convergence of the basis set should be sufficient for our conclusions. 

The accuracy of our band calculations for the integrations in the reciprocal space 
has been tested as a function of the number of k points inside the irreducible part 
of the Brillouin zone (IBZ) of both FCC and BCC structure. Final iterations use 506 
irreducible k points for BCC structure and 505 for FCC. To achieve a convergence of 
the order of 0.1 mRyd for the total energy, we have employed an artificial thermal 
broadening of the bands varying from 1 to 3 mRyd. 

Our gradient corrections are only radial since the band calculations use the atomic 
sphere approximation (ASA) in which angular gradients are zero. Kutzler and Painter 
have discussed the importance of full non-spherical gradients in diatomic molecules [7]. 
Although full gradients are important in molecules, the main effects in the solids of 
high symmetry as BCC and FCC come from the radial parts. This is in part verified 
from the fact that we obtain for the LM potential the same conclusions as Norman and 
Koelling [8] which included a more general Fourier representation of the gradient in 
the warped potential region. Besides for V and Fe, which have non-spherical atoms, 
the non-spherical effects should be more important in the atom than in the solid but 
the opposite should be true for Cu [9]. 

3. Total energy and ground-state properties 

Self-consistent total energy calculations have been performed for different metals, in 
their ground state structure, and for various lattices constants around their equilib- 
rium minimum. The positions of the minimum of the total energy curve, gives the 
equilibrium lattice constant and the curvature at the minimum is related to the bulk 
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modulus at  the equilibrium. The ground-state properties have been obtained from a 
least-squares fit of the calculated total energies points to the Murnaghan equation of 
state [23] 

where V, is the equilibrium volume, E, the minimum total energy, Bo the bulk mod- 
ulus and Bk is its derivative with respect to  pressure. Accurate least square fits are 
needed to determine the bulk modulus and its behaviour with pressure. Except for Ce, 
our least square fits have rms error of less than 0.5 mRyd. For Ce the total energies 
have errors of the order of 1 mRyd. The variation of the bulk modulus with volume 
which follows from (12) is 

d 2 E  Bb 
B ( V )  = V? = Bo (+) . 

dV 

To the electronic energy we add an estimate of the zero-point lattice energy. In 
the Debye approximation [19] this energy is given by 

To determine the Debye temperature OD it is assumed that the low-wavevector phonon 
branch scale as the bulk modulus and the same prescription as in [25,26] is used with 
OD expressed as 

where T,  is the equilibrium Wigner-Seitz radius, M is the atomic weight, B is the bulk 
modulus and Ii' is a scale parameter. As in [26], we choose Ii' = 41.63. At equilibrium 
the calculated Debye temperature are in reasonable agreement with the experimental 
d a t a .  

The effect of the zero-point energy is to increase the total energy, expand the 
lattice and to  decrease the bulk modulus. In lithium the correction is of the order 
of 3% for volume, -3 kbar for the pressure and -13 kbar for the bulk modulus, in 
agreement with [31]. For the transition metals the contributions of the zero-point 
energy are smaller; the equilibrium volumes increase by 0.5 % and the bulk moduli 
are reduced about 2%. These values depend sensitively on the estimate of the zero- 
temperature derivative of the bulk modulus with respect to  pressure. For lithium the 
value of BA is 3.3 in the LD approximation and 3.4 in the Pw approximation, both 
in good agreement with experiment (3.5). For the other metals, the accuracy of the 
calculated bulk pressure derivative BA is difficult to estimate. We found that sensitive 
variation of BA do not much influence the stability of the predicted equilibrium values 
of a and B .  Therefore, the calculated points total energies can also be fitted with the 
Birch equation of state [24]. This approximation is a particular case of the Murnaghan 
equation where BA = 4. Our LD results for different metals are consistent with other 
local density calculations [19,20] in predicting equilibrium lattice constants that are 
too small and bulk moduli that are too large compared with experiment. 
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4. Results and discussion 

In table 1 we show the calculated ground-state properties for various elements. Contri- 
butions from zero-point motion are taken into account. The values of the experimental 
lattice constant of V, Fe, Ni ,  Cu, W are given at  low temperature, approximately at  
T = 4.2 K and are taken from the American Institute of Physics Handbook [27], while 
for Nb at room temperature. The values of bulk modulus of V, Fe, Ni, Cu, Nb, W 
are taken from the lowest-temperature result in the tables of Simmons and Wang [28] 
quoted by Rose et a1 [29]. The experimental data for Li, quoted by Pack et a1 [30], 
and for Ce, quoted by Glotzel [33], are given at  low temperature. The experimen- 
tal bulk modulus for Li has been extrapolated to zero temperature. Except for Li, 
the temperature variations of B are not important compared with the computational 
precision. 

Table 1. Comparison between equilibrium properties calculated using the LD and 
PW approximations and experimental data. The calculated equilibrium lattice con- 
stant a (in units of au) and the bulk moduli B (in units of Mbar) include the zero- 
point energy contribution. Except for Li and Ce, the experimental values of a are 
from [27] and for B are from [28]. For Li these experimental values are quoted by 
Pack et  a /  in [30] and for Ce by Glijtzel in [33]. LD stands for local density and PW 

for Perdew-Wang. 

~ 

BCC FCC 

Li V Fe Nb W Fe Ni c u  a-Ce 

aLD 6.43 5.58 5.25 6.19 5.99 6.43 6.51 6.68 8.42 
apw 6.49 5.74 5.47 6.38 6.13 6.64 6.76 6.96 8.89 
a e x p  6.597 5.72 5.40 6.23 5.98 - 6.64 6.81 9.03 

BLD 0.14 2.0 2.3 1.8 3.1 3.3 2.5 1.8 0.9 
Bpw 0.13 1.6 1.7 1.5 2.8 2.7 1.9 1.3 0.7 
B e x p  0.123 1.57 1.72 1.73 3.14 - 1.88 1.42 0.16 

From table 1, it is evident that the PW potential increases the calculated values of 
lattice constants and compressibilities which often is in the good direction and which 
also was found for the 3d elements studied by Bagno et a1 [9]. Without zero point 
motion correction our calculated Wigner-Seitz P w  radii for V, Fe, Cu are identical 
to those of [9]. It is striking that for the 4d and 5d metals, Nb and W,  the lattice 
constants calculated with PW potential are significantly overestimated. In this context 
one may recall that mainly 3d metals are poorly described by LD calculations, while we 
observe here an increase of the lattice constant of about 3% in V (3d) Nb (4d) and W 
(5d) when using the PW potential. Therefore it seems that these gradient corrections 
lead to a general lattice expansion which not always is wanted. In W for instance non- 
spherical potentials [32] and our LMTO LD calculations give good results for the lattice 
constant and bulk modulus. From this and as was mentioned earlier, the fact that 
we use a large basis, we do not think that even larger basis should change other than 
details of our calculated results. In fact, crude estimates give a pressure contribution 
from 1 > 3 about one order of magnitude less than the f contribution which limits 
the decrease of the lattice constant to about 0.1% in Nb and W. In the 3d transition 
metals studied here, the PW results overestimate lattice constants slightly, in contrast 
to  the LD results which always underestimate. The larger atomic volume calculated 
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with the Pw potential gives softer lattices than the LD potential and the bulk moduli 
are in better agreement with experiment. For LD high values of B are calculated at  
the minimum of total energy, while if calculated at the experimental volume, B would 
be smaller. However, the latter procedure would be unsatisfactory. 

In lithium the zero point contribution is of the same order as the PW correction 
to  LD but neither is sufficient to reproduce the experimental value. In a-Ce, the 
equilibrium volume is somewhat improved by Pw, but the very large discrepancy for 
B found in LD [34] with respect to the measured value is not corrected by Pw. These 
a and B values depend on the way 5p and 4f electrons are treated [33,34]. In our 
calculations the 5p electrons are considered as valence electrons. 

6 0  7 0  8 0  9 0  

NM . fcc 
15 

Figure 2. Total energy as function of volume for FM-BCC and NM-FCC Iron using 
LD potential (top) and using P W  potential (bottom). The thick curves contain the 
zero point motion, the thin curves do not. 

The well known failure of LSD to predict the correct structure of the ground state 
of iron has been discussed quantitatively by many authors [9,20,35-391. The full 
potential calculation [35] using the Local Spin Density (LSD) parametrization of Vosko 
e t  a1 [14] puts non-magnetic (NM) FCC iron 6 mRyd/atom below the ferromagnetic 
(FM) BCC iron. Our total energy difference between FM-BCC and NM-FCC using the 
parametrization of Vosko et  a1 [14] is 2 mRyd/atom. Jansen and Peng have shown that 
this reduction is induced by the spherical approximation [36]. Using the PW potential 
we obtain about -14 mRyd/atom, this being similar to [9], which seems satisfactory 
since iron is known to be FM-BCC. However, the zero-point lattice motion can reduce 
the LSD inability to reproduce the stability of the FM-BCC phase. Namely, it is seen 
that the NM-FCC state is harder ( B  = 3.3 Mbar) than FM-BCC ( B  = 2.3 Mbar). If, 
as is usual, we let the total energy contribution, E,, from zero-point motion be ik , t$ ,  
and approximately scale f+, with a, we get a larger correction for the NM-FCC 
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state as is illustrated in figure 2.  This correction stabilizing FM-BCC over NM-FCC 
is not negligeable compared with t,he total energy LSD difference between the two 
phases. Very precise electronic structure calculations [36] seem necessary to  clarify 
the situation for the LSD potential. Using the Pw potential it is no doubt the correct 
structure is most stable even when neglecting E,. 

To summarize our results concerning equilibrium volumes and bulk moduli, we find 
as in [9] that  for the 3d metals the PW potential gives too large volumes, although 
they are better than from the LD potential which are too small. However, as we have 
included the 4d Nb and 5d W in our study we have also found counterexamples, since 
the LD values are better for these two cases. 

-0.2 - ~ - ~ -  -LA 
0 0.5 1 1.5 2 2.5 3 

r (a.u.) 

Figure 3. Comparison of 4nr2m(r) for Ni in the LD (full curve) and P W  (broken 
curve) approaches. 

In table 2 we show the magnetic properties, of Fe and Ni calculated at  the exper- 
imental lattice constant. The spin-polarized version of the P w  potential give larger 
exchange splitting and magnetic moments than the LSD potential for the same vol- 
umes. This is of course not a good result since we believe tjhat the (lower) experimental 
values are appropriate for the spin part of the magnetic moment M .  The increase of 
M in Fe was found also by Bagno et a1 [9] when using PW and LM; here we show that 
for Ni the value of the exchange splitting increases without changing the LSD magnetic 
moment significantly. For both Fe and Ni  the increased exchange splitting (in Pw) is 
due to  the localized 3d states, while the negatively polarized s- and p- spin densities 
in the interstitial regions increase in amplitude. This should produce quite different 
valence contributions to  hyperfine fields and form factors. However the calculation 
of the former quantity may yet be uncertain in PW due to  the large gradients near 
T = 0. Normalized magnetic form factors (spherical) indicate a localization in real 
space (see figure 3). In iron, the tendency for non-spherical form factors is that  LSD 
calculations [40] are already too extended in comparison with experiment, so that the 
Pw potential does not seem to go in the correct direction, although this can be better 
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checked by calculations using non-spherical spin-densities. In nickel, the LSD form 
factors [41] are smaller than the experimental data, so that the PW potential seems 
to go in the correct direction. In table 2 we show the negative spin-density values 
in the outer part of the Wigner-Seitz spheres. This is compared with the measured 
interstitial spin densities obtained from neutron scattering [42,43]. 

Table 2. Magnetic properties at the experimental lattice constant for Ni and Fe. 
The experimental magneton number nt - nl and exchange splitting are from [45], 
the measured interstitial spin density is from [42] for Fe and from (431 for Ni. The 
Vosko el a /  magnetization dependence is used for LD [14]. 

Metal Method n t  - nl (PB) m(rws) (PE € (.VI 

Iron LD 2.26 -0.0012 2.4 
P W  2.30 -0.0024 2.5 

Nickel LD 0.62 -0.30099 0.7 

Experiment 2.12 -0.0038 to +0.0019 1.2-2.0 

P W  0.62 -0.00134 0.75 
Experiment 0.56 -0.00126 0.3-0.5 

If the magnetic properties are computed at the calculated equilibrium lattice con- 
stant, one should find lower moments in LD and higher moments in Pw. This would 
improve LD a.nd make Pw worse, since the lattice constants would then be smaller in 
the former and larger in the latter case. For the magnetic properties Fe and Ni ,  we 
conclude that P W  does not give better results than using the LD potential [44,45]. 

Measurements of non-ground-state properties such as excitations energies are 
often related to the energy bands, but this is well known to be only approximate. 
In particular, photoemission gives excitation energies which sometimes differ substan- 
tiaiiy from calculated bands. In Cu photoemission experiments [46] are interpreted 
such that the position of the d ba.nds are 1-2 eV lower than those obtained from LD 
calculations [47]. The situation for Ni  is similar, where also the exchange splitting < 
comes out one half of that from LSD calculations [45]. The localized 3d states in Cu 
and Ni modify the one-particle interpretation and the apparent failure of the LD calcu- 
lation is not necessarily proven. Rather, the disagreement in the exchange splitting in 
Ni is likely to be better established especially since it concords with the overestimation 
in magnetic moment. When it comes to Pw calculations we find no significant change 
in the 3d band positions in Cu and Ni .  The value in Ni slightly increases compared 
with the LSD which presumably is already too large (see table 2). 

Fermi surface (FS) properties can be measured very precisely [48] and direct com- 
parisons with calculated bands are usually easier to follow. From de Haas-van Alphen 
(dHvA) measurements one finds that the FS properties in c u  should be more free 
electron like (compared with LD results) in the sense that the large ‘belly’ should be 
more spherical, The small changes in the FS from P W  calculations go in the correct 
direction (see table 3), but are not sufficiently strong and the P W  and LD bands are 
almost identical. The results using LM [8] are still small but opposite (see figure 4) .  
In table 3 we also report the Fermi surface radii for the majority sixth band in Ni; 
both LD and P W  radii are similar and close to dHvA data [49]. In VI dHvA [50] and 
positron annihilation [51] measurements indicate that the N pockets are smaller than 
those from LD calculations. Using the LM potential [8] it was found that the FS was 
improved compared with LD. Here using Pw, we find a similar trend (but smaller in 
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Table 3. Fermi surface parameters in units of 2 n / a .  For V,  E(l) and E ( 2 )  are the 
N-centred ellipsoid areas. LM stands for Langreth-Mehl. 

Fermi surface a r e s  in V 

E(1) area E(2) area 

LD 0.140 0.172 
LM 0.130 0.160 
P W  0.134 0.166 
Experiment [50] 0.124 0.148 

Fermi surface dimensions in Cu 

(100) (110) Neck 

LD 0.844 0.737 0.156 
LM 0.846 0.735 0.160 
P W  0.840 0.738 0.155 
Experiment [48] 0.827 0.743 0.147 

Majority sixth band in Ni 

LDA 0.77 0.59 0.05 
PW 0.77 0.60 0.04 
Experiment [49] 0.77 0.58 0.05 

03 
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0 1  

0.0 

-0 I 
x 
v G?i -02 
x 
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-0 5 

y -03 

.0.6 

-0.7 

-0.8 

Copper 

Figure 4. Copper bands calculated using the L D  potential (full curves) and using the 
LM potential (broken curves). The bands using the P W  potential practically coincide 
with the LD bands. 

amplitude) as shown in table 3.  The reason of this improvement is that both the 
LM and PW potentials are more attractive than LD near the Wigner-Seitz boundary 
where the delocalized p electrons are (see figure l ( b ) ) ,  then the down-shift of p-states 
near the N-point diminishes the corresponding ellipsoid (see figure 5 ) .  In BCC Fe the 
trend is the same on the N state (see figure 6) and the minority ellipsoid decreases 
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in size despite the increased [ for the d band. Recent positron annihilation experi- 
ments confirm the absence or a t  least very small dimension of the ellipsoid [52]. But 
another change in FS topology occurs a t  the zone centre when the P W  potential is 
used. The minority electron pocket almost disappears, while i t  should be somewhat 
larger [53,45]. The effect is partly due to  the increase in which moves t.he minority 
gamma state upwards. 

0 3  

0 2  

0 1  

0.0 

-0 4 

-0 5 

I 
07 - 1 -  

r H N r P N P  H 
Vanadium 

Figure 5. Vanadium bands calculated using the LD potential (full curves) and using 
the L M  potential (broken curves). The bands using the P W  potential practically 
coincide with the LD bands. 

LD PW 
Figure (3. Iron spin-polarized bands calculated using the LD potential (left) and the 
PW potential (right). The majority bands are the full curves and the minority are 
the broken curves. 

Recent positron annihilat,ion experiments in y-Ce indicate that an improvement 
of LD-FS is obtained if the f-band was moved up 40-50 mRyd [54]. This upward shift 
was partly obtained in a different non-local approach [58]. I t  seems that Pw potential 
gives a very small upward shift that  does not change the LD FS topology in Ce. In view 
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of the localized f-band it may be that the f-contributions in the FS should decrease by 
another reason, which would imply that no conventional density functional methods 
are applicable for f-bands. This is so for other rare-earth metals, while Ce and some 
Ce alloys are limiting cases and subject to  contrasting views. 

The low-density metal Li seems to  have a more spherical FS than obtained by LD 
calculations which predict maximum distorsion 6 = (kl lo-kloo)/ko in the range 5-7%. 
In a measurement of electron momentum density by angular correlation of positron- 
annihilation radiation [55], 6 was found to  be 2.8 f 0.6%, which is in good agreement 
with a quasi-particle pertubation of LD bands [56]. The Hartree-Fock calculation 
by Pack e f  a1 [30], giving 6 = 3.5%, seem t o  indicate a significant reduction of the 
distorsions when a non-local, self-energy operator C ( P ,  P’) is included. However, recent 
dHvA measures gives an higher value of 6 = 4.8 f 0.3% [57]. Here, and in [58], we find 
that  non-locality corrections are not able t o  correct the FS into a more isotropic shape. 
The PW results for the FS are almost identical to  that from LD calculations. This can 
be understood from the fact that  the electron density is so low that correlation and 
exchange holes are so large that a single gradient value cannot properly describe the 
true density variations within the hole limits [58]. To summarize, for our choice of 
materials we find in general only small changes of the FS properties when the PW 
potential is used, as the P W  and LD bands are almost identical. 

5. Conclusions 

Our results can be compared with two similar studies which have been published 
showing the effect of using the gradient-corrected potentials [8,9]. Here we have 
studied in particular the effect of the PW potential on several properties a.nd for several 
systems which allows to extract general trends. As in [8] we find the FS properties of V 
to  improve using both LM and PW, whereas those of Cu are degraded when using LM, 
but slightly improved for Pw. For Fe and Ni we have some changes of the band which 
hardly improves the general FS, and in Ce and Li no significant change as compared 
with LD calculation. As in [9] we find that the bulk moduli and equilibrium lattice 
dimensions are generally improved by the PW potential in 3d metals, but the changes 
are too large. Since some magnetic and band properties are worse in comparison 
with LD calculations, we cannot be as optimistic as [9], in which it is suggested that  
the present gradient-corrected potential should replace the LD potential. In addition 
non-3d elements like Nb and W give lattice constants that  are too large when PW 
corrections are used, whereas in these cases those calculated using LD have small errors. 
This overcorrection of the lattice constant already exist in copper and extension of the 
basis set is not likely to improve the situation significantly. As was concluded in [58], 
it should be possible to  obtain a non-local density potential which improves bands 
and magnetic moment everywhere but there is a delicate balance between exchange 
correlation. We believe that an improved version of non-local correction has to  be 
proposed and tested before a general replacement of LD potentials can be considered. 
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